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Abstract—Decoding motor behavior from electrocorticography
(ECoG) signals is difficult due to strong variability across
recording sessions and the limited availability of labeled data.
The goal of this semester project was to improve a supervised
baseline model by exploring self-supervised learning (SSL) ap-
proaches and alternative training losses. The baseline model is a
transformer-based architecture that takes wavelet-transformed
ECoG signals as input and predicts the wrist position of a
monkey.
TS-TCC [1] is applied as a self-supervised pretraining method,
using contextual and temporal contrastive losses without rely-
ing on labels. After pretraining, only the encoder is retained
and used for downstream regression tasks. The results show
that the self-supervised pretrained model generalizes better
to future recording sessions compared to the fully supervised
baseline, achieving higher mean R2 scores across recordings.
Label fraction experiments further demonstrate that SSL
allows the model to reach reasonable performance with as little
as 1% of labeled data.
Additional losses based on soft temporal and instance-level
contrastive learning were also evaluated [2]. While these losses
showed promising behavior on smaller datasets, they tended to
degrade performance when applied to large-scale pretraining,
often smoothing predictions and reducing performance on
well-performing sessions. Overall, this project highlights the
potential of self-supervised learning to improve generalization
and label efficiency for ECoG-based motor decoding.

I. INTRODUCTION

Electrocorticography (ECoG) signal decoding for motor be-
havior faces significant challenges: strong variability across
recording sessions, limited labeled data availability, and
poor generalization to future time periods. This work ad-
dresses wrist position regression from 64-channel ECoG
recordings using self-supervised learning (SSL) to improve
cross-session generalization. A self-supervised pre-training
method named TS-TCC [1] is leveraged on five sessions,
followed by supervised fine-tuning on a sixth session; gen-
eralization is then evaluated on temporally distant sessions.
The goal is to demonstrate that self-supervised pretraining
achieves superior generalization compared to purely super-
vised approaches.

II. RELATED WORK

ECoG-based neural decoding faces significant generalization
challenges across recording sessions [3]. Recent clinical
demonstrations [4] highlight both promise and challenges

of real-world neural decoding. Self-supervised learning ap-
proaches like BrainBERT [5] and TS-TCC [1] have shown
promise for learning representations from unlabeled neural
data. TS-TCC uses temporal and contextual contrasting:
temporal contrasting predicts future representations from
past context, while contextual contrasting maximizes agree-
ment between augmented views of the same window. Con-
trastive learning methods from computer vision [6] have
been successfully adapted for time-series [7]. Extensions like
soft contrastive learning [2] introduce continuous similarity
measures for more nuanced temporal relationships.

III. METHODS

A. Dataset and Preprocessing

The dataset consists of 64-channel ECoG recordings from
non-human primates performing reach-and-grasp tasks. The
electrode array covers primary motor (M1) and somatosen-
sory (S1) cortices. The regression target is the z-axis wrist
position during reaching motions.
Recordings span multiple sessions across different days: D1–
D5 (sessions from December 2-5 and 9, 2024) are used
for self-supervised pretraining, D6 (December 16, 2024)
for supervised downstream training, and 12 test sessions
(December 2024 to February 2025) for generalization eval-
uation. Test sessions are never used during model training
or validation.
Preprocessing transforms raw signals into time-frequency
representations: signals are segmented into 500-sample (1
second) windows at 500 Hz, normalized and quantized to
[0, 1023]. Continuous wavelet transform (CWT) extracts
features across alpha (10–30 Hz), beta (30–60 Hz), and
gamma (80–100 Hz) bands, yielding 5 frequency channels
per electrode (320 features total). Sessions are split into 60%
training, 20% validation, and 20% test.

B. Baseline Model

The supervised baseline developed at the Integrated Neu-
rotechnologies Laboratory (INL) uses a transformer archi-
tecture: CWT features (500×320) are downsampled to 10
time steps, processed through linear embedding (320→32),
positional encoding, 2-layer transformer with linear attention
(2 attention heads, 128-dim feedforward layer), global aver-
age pooling, and linear regression head. Training uses MSE



loss, Adam optimizer (lr=3e-4), batch size 128, evaluated
with R2 score. The model suffers from poor cross-session
generalization due to overfitting session-specific patterns and
aggressive temporal downsampling that could potentially
discard fine-grained dynamics.

C. Self-Supervised Learning Framework
TS-TCC follows a two-stage pipeline: self-supervised pre-
training followed by downstream regression. The CNN
encoder contains three 1D convolutional blocks (channels:
320 → 32 → 64 → 128) applied to full-length sequences
x ∈ RB×320×500, preserving temporal structure while grad-
ually reducing length through max pooling. The resulting
representation is z ∈ RB×128×65, which is transposed to
z′ ∈ RB×65×128 and processed by a transformer encoder
(hidden dimension 100). This yields contextualized timestep
features h ∈ RB×65×100 and a global temporal embedding
ct ∈ RB×100. During SSL, linear predictors map ct to future
latent targets in R128 across 22 timesteps, enforcing temporal
predictive consistency between two augmented views. For
downstream tasks, the transformer and projection head are
discarded, keeping only the pretrained encoder that produces
z, which is flattened and fed to a linear head to predict the
target value.

Figure 1: Illustration of TS-TCC extracted from Figure 1 in [1]

Pretraining optimizes two contrastive objectives:
Contextual contrasting maximizes agreement between aug-
mented views of the same window using scaling and Gaus-
sian noise. Given 2N projected context vectors {ci}2Ni=1, the
loss is
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where sim(u, v) = u⊤v
∥u∥∥v∥ is cosine similarity, c+i is the

paired view from the same sample, and τ = 0.8 is the
temperature parameter controlling softmax sharpness. The
contribution of this term to the total objective is weighted
by λCC = 0.7.

Temporal contrasting predicts future representations from
context. Let cst denote the strong-augmentation context vec-
tor and zwt+k the weak-augmentation latent at a future step
t+ k. The loss
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is computed symmetrically for weak→strong as Lw
TC. The

final SSL objective is

LSSL = λTC (Ls
TC + Lw

TC) + λCC LCC,

with λTC = 1.0.

D. Additional Losses and Extensions

Soft temporal and instance-level contrastive losses [2] were
evaluated as extensions to TS-TCC. While showing promise
on smaller datasets, they exhibited inconsistent performance
when applied to large-scale pretraining on D1–D5, improv-
ing some sessions while degrading others.

IV. EXPERIMENTS

A. Experimental Setup

Self-supervised pretraining uses sessions D1–D5 (40 epochs,
batch size 128, Adam lr=3e-4) with contextual contrasting
(τ=0.8, weight=0.7) and temporal contrasting (22 future
timesteps, weight=1.0), implemented within the TS-TCC
framework. Two backbone architectures are considered: the
standard TS-TCC encoder and the baseline transformer
model INL.
Downstream training on D6 follows two strategies: Linear
Probing (LP), where the pretrained encoder is frozen and
only a regression head is trained, and Fine-Tuning (FT),
where the entire encoder is updated jointly with the re-
gressor. As supervised references, a model trained only on
D6 (Sup) and another one trained with labels from D1–D5
used for pretraining (P-Sup) are included. A frozen random
encoder (Rand + LP) provides a baseline to assess the
effect of self-supevised pretraining compared to untrained
representations.
Evaluation measures cross-session generalization using R2

scores on 12 temporally distant test sessions spanning days
to months after training. Additional experiments include
instance-level (Inst) and temporal (Temp) contrastive losses,
applied independently during pretraining.
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Figure 2: Comparison of R2 scores across models and training strategies described in IV-A. LP and FT denote Linear Probing (frozen
encoder) and Fine-Tuning (full update), respectively; Sup and P-Sup indicate supervised training on D6 only and on D1–D5, and Rand
+ LP a frozen random encoder. inst and temp refer to instance-level and temporal contrastive losses. Unless marked as INL (baseline
transformer), all models use TS-TCC.

B. Results

Self-supervised pretraining significantly improves cross-
session generalization (Figure 2). Compared to the super-
vised D6 baseline, SSL + LP and SSL + FT increase mean
test-session R2 by +0.2027 and +0.2508, respectively. For
the INL model, the gains are even larger: +0.4720 (LP) and
+0.5201 (FT).
Some sessions show especially strong improvements with
LP. For example, sessions 20250109 / 20250110 improve
by +0.8601 / +0.6525 over the supervised D6 TS-TCC
model, and by +1.0579 / +1.5032 over the supervised D6
INL model. Finally, SSL + FT also outperforms supervised
training on D1–D5 by +0.0356 on average, despite using no
labels.
1) Label Fractioning: Label fraction experiments (see Fig-
ure 3) confirm previous results and show remarkable ef-
ficiency: SSL + FT achieves R2 = 0.4359 with only
1% labeled data vs. R2 = 0.2428 for supervised baseline
(+0.1931). SSL enables reasonable performance (R2 > 0.4)
with just 1–3% labeled data. In addition, SSL + LP even
outperforms the supervised baseline when having less than
20% of labeled data.
2) Embedding Analysis: To further understand the repre-
sentations learned during self-supervised pretraining, D6’s
embeddings are analysed from a random and pretrained
CNN encoder using the UMAP (n neighbors=10, tar-
get metric=l2) manifold learning technique (see Figure 4).
For the random encoder, local consistency (using K=10 near-
est neighbors), which quantifies how similar the target values
of neighboring points are in the embedding space, and LP R2

scores reach 0.772 and 0.415, respectively, whereas the pre-
trained encoder on D1–D5 achieves 0.997 local consistency
and 0.727 R2. Better clustering indicates that SSL effectively
organizes input data according to underlying motor patterns
without using position labels during pretraining, supporting
improved downstream regression performance.

Figure 3: Performance (R2 score) as a function of the fraction of
D6 used for training. Only the training split of D6 is fractioned,
while the test split remains unchanged. Self-supervised pretraining
is performed on D1–D5.

Figure 4: UMAP visualization of D6’s embeddings from CNN
encoders. Top row shows a random encoder while bottom row
shows a pretrained encoder on D1–D5. Left plots are colored by
true wrist positions with local consistency scores; right plots show
predicted wrist positions via linear probing on D6 with R2 scores.
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3) Ablation Study: The contribution of each loss component
in the TS-TCC framework is investigated via ablation. The
Contextual Contrastive (CC) loss, as well as the Temporal
Contrastive losses from weak (TCW ) and strong (TCS)
augmentations, are removed individually. Removing both
temporal contrastive losses simultaneously is denoted as
TC. All ablations are evaluated using LP and FT, reporting
average and median R2 on the same cross-session test set
as Figure 2.

Model Config TS-TCC – CC – TCW – TCS – TC

LP (avg R2) 0.3389 0.2849 0.2904 0.3115 0.1228
LP (med R2) 0.3852 0.3201 0.2525 0.3025 0.1126
FT (avg R2) 0.3870 0.3902 0.3464 0.1588 0.2505
FT (med R2) 0.4106 0.3634 0.2883 0.1676 0.2517

Table I: Ablation study reporting average (avg) and median (med)
R2. The TS-TCC model is ablated by removing individual losses:
Contextual Contrastive (CC), Weak and Strong Temporal Con-
trastive (TCW , TCS), or both simultaneously (TC).

V. DISCUSSION

SSL improves generalization by learning robust representa-
tions from data structure rather than potentially biased label
supervision. The temporal and contextual contrastive objec-
tives capture stable motor-related neural dynamics across
sessions, evidenced by SSL + FT outperforming supervised
baselines even without position labels during pretraining.
A critical limitation is sensitivity to data scaling and normal-
ization across recording sessions. To achieve the reported
results, adaptive normalization was applied by scaling each
test session using statistics computed from the first 12% of
that session’s data. Without this adaptive scaling, all models
performed poorly when using normalization parameters from
training sessions, making meaningful cross-session compar-
ison difficult. It reveals the fundamental challenge of neural
signal non-stationarity over time, highlighting that even SSL
approaches remain sensitive to distributional shifts in neural
recordings.

Figure 5: Different mean decoding performances (R2 score) based
on the data’s ratio used for scaling the entire session’s data.

The demonstrated label efficiency (reasonable performance
with 1–3% labeled data) addresses neural decoder develop-
ment bottlenecks. For hardware deployment, self-supervised
pretrained models can serve as teacher networks for knowl-
edge distillation into efficient architectures suitable for real-
time BMI applications.

VI. CONCLUSION

This work demonstrates that TS-TCC self-supervised pre-
training significantly improves ECoG-based motor decoding
cross-session generalization (+0.20–0.25 R2 improvement)
compared to supervised (Sup) approaches. Key findings: (1)
SSL achieves superior future-session performance while su-
pervised baselines often fail catastrophically, (2) remarkable
label efficiency enables reasonable performance with only
1–3% labeled data, and (3) SSL can outperform supervised
models trained on multiple sessions (P-Sup) without using
labels. These results establish SSL as valuable for neural sig-
nal processing, particularly for long-term BMI applications
requiring cross-session stability.
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